
USAARL Report No. 2000-08

Preliminary Design of an Image Quality Tester
For Helmet-Mounted Displays

By

Sheng-Jen Hsieh

Texas A&M University

and

Clarence £. Rash

Aircrew Health and Performance Division

and

Thomas H. Harding
Howard H. Beasley

John S. Martin

19991222 021
UES, Inc.

November 1999

DTIC QUALITY

Approved for public release, distribution unlimited.

U.S. Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577

Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC),
Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the
librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on
automatic mailing lists should confirm correct address when corresponding about Laboratory
reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of the Army position, policy, or decision,
unless so designated by other official documentation. Citation of trade names in this report does
not constitute an official Department of the Army endorsement or approval of the use of such
commercial items.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION

2b. DECLASSIFICATION / DOWNGRADING

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release, distribution
unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

USAARL Report No. 2000-08
5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
U.S. Army Aeromedical
Research Laboratory

6b. OFFICE SYMBOL
(If

MCMR-UAD

7a. NAME OF MONITORING ORGANIZATION
U.S. Army Medical Research and Materiel
Command

6c. ADDRESS (City, State, and ZIP Code)
P.O. Box 620577
Fort Rucker, AL 36362-0577

7b. ADDRESS (City, State, and ZIP Code)
504 Scott Street
Fort Detrick, MD 21702-5012

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)
PROGRAM
ELEMENT NO.

62787A

PROJECT
NO.

30162787A879

TASK
NO.

WORK UNIT
ACCESSION NO.

DA336445
11. TITLE (Include Security Classification)

(U) Preliminary Design of an Image Quality Tester for Helmet-Mounted Displays

12. PERSONAL AUTHOR(S)
Sheng-Jen Hsieh, Clarence Rash, Thomas Harding, Howard Beasley, John Martin

13a. TYPE OF REPORT
Final

13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month,

1999 November
15. PAGE COUNT

43
16. SUPPLEMENTAL NOTATION

17. COSATI CODES

FIELD

-2i
01

GROUP

02

03

SUB-GROUP

01

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
image quality tester, helmet-mounted displays

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Helmet-mounted displays (HMDs) provide essential pilotage and fire control imagery
information for pilots. However, image quality testers for HMD field performance
validation do not currently exist. This research employed techniques from imaging analysis
and interpretation, and computer-aided design/computer-aided manufacturing (CAD/CAM) to
investigate a preliminary design for a portable HMD image tester.

For this study, a charged couple device (CCD) camera and lens were selected. Hardware
characteristics such as viewing angles in horizontal and vertical positions, dynamic
working range at day and night, pixel resolution, focal length, and aperture ratio were
evaluated with regard to HMD functionality. Experiments to evaluate camera sensitivity and
test pattern merits were conducted using a programmable micro positioning system, CCD
camera, optical fixtures and benches. Next, the relative ratio among features within the
image profile was established and an ideal image profile and evaluation criteria were
established based on the experimental results. Third, image processing algorithms and
techniques, such as edge detection, were developed and applied in test pattern feature

20:J?ISTRIBUTION / AVAILABILITY OF
j/j UNCLASSIFIED/UNLIMITED T SAME AS RPT. DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Chief, Science Support Center

22b. TELEPHONE (Include Area
(334) 255-6907

22c. OFFICE SYMBOL
MCMR-UAX-SS

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

detection. A software prototype, including modules for image capture, image analysis,
interpretation, and user manuals, was developed. Finally, a concept hardware package design is
proposed. This design incorporates a notebook computer with a flat panel display to interface
with the camera and software prototype; and incorporates fixtures for the HMD, camera,
computer, and power supply. This design will allow the tester to be used in the field.

Table of contents
Page

Introduction 1

Functionality and operating process 2

Methodology 3

Image capture hardware specification 4

Test pattern features investigation 6

Software prototype design 9

Image capture module 9

Image analysis and interpretation module 11

Algorithm design 11

Testing and validation 13

Hardware package design 15

Conclusions and future directions 15

References 18

Appendix A. List of manufacturers 19

Appendix B. Software prototype program 20

List of figures

1. The IHU of the AH-64IHADSS 1

2. The IHADSS HDU 2

3. Display size 3

4. Test pattern from the IHADSS HMD 3

iii

Table of contents (continued')
List of figures (continued)

Page

5. Flow chart for the HMD prototype tester operation 3

6. Experimental setup for camera sensitivity analysis 4

7. Sampling locations on the test pattern 4

8. Plot of photometer and CCD camera data 5

9. Setup for test pattern measurement 6

10. Test pattern design based on measurement results 7

11. Replicated test pattern image 7

12. Measurement of luminance of the center lines 8

13. Center lines measurement with varied focus 8

14. Designed test pattern with focus on the center lines 9

15. Opening screen of prototype software 10

16. Image capture module • • 10

17. Image capture component 10

18. Image processing component 10

19. Image analysis and interpretation module 11

20. Tilted test pattern binary images from image analysis module 14

21. Overall testing results of an HMD 14

22. Tilted test pattern before (left) and after (right) Sober edge detection 15

23. Investigation of CCD image capture arrangement 16

24. CAD concept of prototype hardware design 16

iv

Table of contents (continued)
List of tables

Page

Measured data and correlation coefficient from photometer and CCD camera 5

Introduction

Helmet-mounted displays (HMDs) are a gateway to the pilot for viewing pilotage and fire
control imagery. In Army aviation, the AH-64 Apache helicopter uses an HMD system known as
the Integrated Helmet and Display Sighting System (IHADSS). The IHADSS consists of various
electronic components and a helmet/display system called the Integrated Helmet Unit (IHU). The
IHU (Figure 1) includes a helmet, visor housings with visors, miniature cathode ray tube (CRT),
and helmet display unit (HDU). The HDU serves as an optical relay device which conveys the
image formed on the CRT through a series of lenses, off a beamsplitter (called a combiner), and
into the aviator's right eye (Figure 2). The CRT is 1 inch in diameter and uses a P-43 phosphor.
The combiner is a multilayer dichroic filter which is maximized for reflectance at the peak
emission of the P-43 phosphor.

The U.S. Army is currently developing the next generation reconnaissance aircraft, the RAH-66
Comanche. This aircraft will incorporate an HMD which will be binocular in design. While its
final design is still in review, it will basically consist of two image sources (either miniature CRTs
or liquid crystal displays) with two sets of optics, delivering imagery to both eyes.

Figure 1. The IHU of the AH-64 IHADSS.

Currently, there is no existing image quality tester for HMD validation in the field. To
maintain system integrity and readiness, and to provide pilots with validated pilotage, navigation,
and fire control imagery, there is a need to design and construct an image quality testing tool for
the HMD. The objective of this study is to propose and test a design concept for an image quality
tester for HMD subsystems. The tester can be used as a validation tool to verify settings for regular
flight missions and for preventive maintenance tasks. The first prototype tester will be designed
for the AH-64's IHADSS HMD.

Figure 2. The IHADSS HDU.

Functionality and operating process

The proposed tester will allow pilots and maintenance personnel to validate the image quality of
an HMD. Basic required characteristics include (1) simple design, (2) ease of use, (3) robustness,
and (4) accuracy for operations and maintenance. The prototype should be small enough to fit into
a brief case, which would include a lap-top, image capture system, and power supply pack.

The IHADSS HMD has a monocular 30-degree vertical by 40-degree horizontal field-of-view
(FOV). Future HMDs most likely will have larger FOVs and be binocular in design. HMD corner
obscurations are generally permissible and symmetrical for the IHADSS, as illustrated in Figure 3.
Since hardware changes to the various aircraft electronics will not be allowed, image quality
validation must be performed using manufacturer built-in test patterns. The built-in test pattern of
the IHADSS HMD is used as the inspection specification on which the first tester will be based.
The test pattern shows strips of gray opposed along the vertical center lines. Each strip contains 8
to 10 shades of gray, depending on the contrast ratio. Adjacent shades have a square root of 2
differential of brightness. Figure 4 is a snapshot of the test pattern captured from the IHADSS
HMD. For more detailed discussion of the HMD test pattern features, see the Honeywell, Inc.
study guide (1985) and Harding et al. (1995). For testing this test pattern, the inspection features
used by the image quality tester prototype will include (1) four vertical center lines, (2) one
horizontal center line, (3) two gray shade patterns (with 8 to 10 shades), and (4) a boundary box.

40 degree

degree

Figure 3. Display size. Figure 4. Test pattern from the fflADSS
HMD.

Based on the design objectives and inspection procedures, the tester operation procedures are as
follows: (1) the pilot adjusts the HMD settings and passes the HDU to the crew chief; (2) the crew
chief inserts the HMD into a fixture; (3) the system examines the center and horizontal line features
of the test pattern using a narrow-angle lens; (4) the system inspects the test pattern for image
displacement and/or disorientation; (5) the system examines the number of gray-shades, the focus,
luminance, and boundary lines, using a 42-degree wide-angle lens; and (6) the system generates a
final report. Figure 5 shows a flow chart for the proposed operation procedures.

Setup HMD Evaluate setting
Acquire image with

telephoto lens
v Check orientation ■■ ■ w w

—> Check horizontal
view

Check focus v
Check vertical
with wide-angle

lens

Check horizontal
view

 ^ w

Measure
luminance Generate report '—►

Figure 5. Flow chart for HMD prototype tester operation.

Methodology

This study involved designing and testing (1) the hardware specification for image capture, (2)
the test pattern inspection features, (3) the software prototype, and finally (4) the hardware
prototype. Experiments and statistical analysis tools were applied throughout the design process.

Image capture hardware specifications

To determine the needed camera and lens specification for test pattern image capture,
experiments were conducted to verify the sensitivity of a candidate camera. The camera and a
Photo Research (Appendix A) model 1980 photometer were mounted using a reconfigurable optical
fixture and bench accessories and were used to capture an electronically generated gray shade test
pattern. Figure 6 illustrates the experimental setup. The luminance of the test pattern image was
registered by the charged couple device (CCD) camera (and image capture card) and the
photometer. Figure 7 shows the locations where data were sampled from the test pattern. These
data were measured from a fixed position along a horizontal line across the entire test pattern.
Three measurements were taken from each region. An observation resulting from the experiment
was that the luminances of the gray shades presented in the test pattern were not linearly distributed
between 0 and 255. The differential of luminance for adjacent shades was greater than an
approximate square root of 2. A statistical analysis was performed on these data. Results indicated
that the luminance levels measured by the photometer were consistent with data from the camera
and image capture card up to and including the 7th gray shade. It can be seen that the CCD saturated
after the 7th gray shade area. To prevent this, the aperture of the CCD would have to be adjusted. If
only the first seven gray shades are used in the analysis, correlation is 0.98. The table and Figure 8
record the data collected from both instruments and the statistical analysis results.

Figure 6. Experimental setup for camera sensitivity analysis.

12 34 567 8 9 10 11

Figure 7. Sampling locations on the test pattern.

4

Table.
Measured data and correlation coefficient from photometer and CCD camera.

Gray shade Photometer luminance readings CCD gray level readings

1 3.25 3.32 3.35 7 7 7

2 7.47 7.51 7.46 25 25 25

3 17.07 16.99 16.99 65 65 65

4 30.51 30.54 30.43 99 99 99

5 48.28 48.24 48.12 146 146 146

6 71.9 71.86 71.81 194 194 194

7 98.35 98.54 98.67 227 227 227

8 127.1 127.2 127.3 230 230 230

9 157.9 158.1 158.0 235 235 235

10 187.4 187.4 187.1 240 240 240

11 221.2 221.4 221.2 242 242 242

12 200.7 200.6 200.6 237 237 237

Luminance vs gray level (7 shades): Correlation = 0.983886; Fisher's z = 2.406549;
Probability = 00006

' 7 8 3

,
» 11

/ 6 |-*-Si*jSh_»|

/ 5

/ t

1

0

/ 2

I \
 _____—, , , 1

100 150
Gray level

Figure 8. Plot of photometer and CCD camera data.

5

In an attempt to capture the test pattern image on the IHADSS fully, several different cameras
(with standard lenses) were evaluated. However, although the full test pattern could be captured,
the details of the four vertical center lines could not be differentiated. Therefore, a decision was
made to use a narrow angle lens to zoom in on the center area of the test pattern in order to capture
the details of the center lines. HMDs are also used at night; therefore, the prototype tester-
specifically the camera-should provide good sensitivity at low luminance levels. First order
specifications for the required camera were summarized as follows:

1. Sensitivity: < 0.005 lux
2. Focus: To infinity
3. Resolution: > 768 x 498 pixels
4. Focal length: ~lA inch
5. Iris: Manual
6. Fields of view: >40 (H) x 30 (V) degrees and -5x3 degrees

Test pattern features investigation

An additional experiment was conducted to investigate various aspects of capturing the test
pattern. Multiple cameras were used since a single camera that met all the desired specifications
was not available at the time of this study. Aspects of interest included the size of the pattern,
number of different features, relative luminance ratios among features, spatial content of each
feature, and number of gray shades. The IHADSS HMD was mounted on the top of the optical
post, and the post was fixed on top of a round optical table controlled by a programmable position
table. The table was driven by a stepping motor with an accuracy of 1 micron (urn). The test
pattern image was projected onto a video monitor for observation. Figure 9 shows the experimental
setup. The entire test pattern image from the HMD was captured and constructed through a series
of mini steps in the horizontal and vertical directions. The overall picture was approximately 38 x
29 degrees, which was close to the specification in the study guide (Honeywell, Inc., 1985). The
center line occupied approximately 0.5 degree out of 38 degrees. There were two strips with 10 to
12 gray shades mirrored opposite the center lines. Figure 10 shows the structure of the IHADSS
test pattern. A series of images were taken to probe the content of each gray shade in terms of
luminance. Based on the observed information, a series of image files was constructed and used as
an image profile for purposes of the software prototype development. Figure 11 displays this
replicated test pattern image.

Figure 9. Setup for test pattern measurement.

IHADSS Test 38.0, 0

Figure 10. Test pattern design based on measurement results.

Figure 11. Replicated test pattern image.

A similar experiment was conducted to detail the center lines within the test pattern. Figure 12
shows the luminance scan measurements for the center lines. The four peaks represent the four
center lines which are spread out over 0.8 degree from valley to valley and 0.4 degree peak to peak.
The average peak width is about 0.0969 degree and the average distance between peaks is about
0.1347 degree. Note: A measurement of 1 degree is about 485 um in the object plane.

Another experiment was conducted to probe the state of the center lines when the HMD is in
focus and not in focus. Varied focus values of -1 to 1 diopter of CRT were applied. Measure-

ments of the four vertical center lines were taken. An interesting finding was, when the HMD was
in focus, the ratio of luminances between bottom to mid-peak (B) and peak to valley (A) was close
to 1. However, when the setting was not in focus, the B:A ratio was less than one. Figure 13
documents these observations and illustrates the concept. Findings from the above experiments,
such as measurements, luminance ratios, and the content of each feature within the test pattern,
were used to create a test pattern image using graphics software. Figure 14 shows an image of such
a test pattern using a 5 X 4 degree lens to focus on the center lines of the test pattern. In addition,
the ratio of the square root of 2 luminance difference was used to design gray shades ranging from 0
to 255 gray levels.

2.5

;i.5

I 1
3

0.5

Scan of 4 lines (0 diopter)

-0.6 -0.4 -0.2 0 0.2

Position (degrees)

0.6

Figure 12. Measurement of luminance of the center lines.

Scan of 4 Lines at with CRT focus varied

-0.2 0 0.2

Position (degrees)

Figure 13. Center lines measurement with varied focus.

To emulate potential human errors in setting up the HMD, a set of parameters (including
brightness, orientation, spatial adjustment, and contrast) were manipulated and the resulting images
captured. These images were used as a basis for creating new image files. These designed images

I

F

'■'"•'-'■ * ■
Figure 14. Designed test pattern with focus on the center lines.

were used to test the software prototype. The experiments were carried out using similar methods.
For example, to measure the potential displacement of the test pattern, a camera was mounted
facing the HMD. The test pattern was projected onto a video monitor by means of a personal
computer (PC). Measurements were taken before and after the spatial adjustments. The maximum
adjustments in the upward, downward, left and right directions were 3.57,2.98,4.90 and 4.90
degrees, respectively, based on an FOV of 40 x 31 degrees (Harding et al., 1995).

Software prototype design

The software prototype was designed to capture, analyze, and interpret the image against test
pattern features such as the four center lines and number of gray shades. Accordingly, the prototype
design will require three modules-image acquisition, image analysis and interpretation-as well as
on-line user help. Figure 15 shows the modules involved in the prototype. Visual Basic (VB) was
used to develop the prototype because of its flexibility in linking and embedding with other
commercial software and because it was a powerful toolbox for rapidly prototyping a complicated
window. In the following sections, we describe the functionality of each module and how the
modules are integrated. Algorithms developed to interpret the image follow. Finally, testing and
validation of the code is addressed. The source code for the program can be found in Appendix B.

Image capture module

The VB Object Linking and Embedding (OLE) capability allows integration of other programs.
In this case, the image capture graphics program served as an object which was linked into the VB
main program. The graphics program was launched by activating the linked object. Once the
object had been activated, the VB main program allowed the user to modify, save, or open
documents created by the graphic program in VB's integrated design environment (IDE). After the
user was done with the image capture graphics program, control was released to the VB
environment. The graphics program itself contained three components: the driver used to activate
the image capture card and digitize the video signal into a graphics image format (e.g., bitmap or
jpeg); an image processing shell which allowed image manipulation (e.g., sharpening and

lightening); and an on-line user manual. Figure 16 shows the opening screen for the image capture
module. Figures 17 and 18 show image capture and processing subcomponents.

Figure 15. Opening screen of prototype software.

click to activatefc^ife
, ., __. ■^T^:msu&missP!^
{View A Capture f User Manual§He!p

Figure 16. Image capture module.

■/,_'-- frJiiiA

n n
IMMCl [lÖT J J jj J

,..Sf» ":r--\ ."V'."■;;,■;;":■ .,: ^

"
; . 4XHfi.3tIZIHI -

L/_i jj«
. ...^IliiSwr.HfliSIDRidr, .

p&npii rriMfik

SlHKft | Di. 1 Umii [Jt|
feikr] f| nü'i4wT] ■

r.B» ";E*; klm»B»' i&Kour Map Window Help

1-lQlxl

Figure 17. Image capture component. Figure 18. Image processing component.

10

Image analysis and interpretation module

The image analysis and interpretation module (1) detects the presence of key features such as
center lines within the test pattern, (2) compares selected features against the feature specification,
and (3) generates findings. VB components were created to provide these functions and to interface
with other modules. A subwindow titled "evaluation criteria" was created to analyze and interpret
the captured image from an HMD. A few created algorithms were coded in VB to perform the
analysis. Other subwindows, such as a directory box and file list boxes were created to allow
retrieval of image files for analysis. Finally, an additional subwindow was designed to display the
image currently being analyzed. This module also allows access to other modules via a button
control. Figure 19 shows the image analysis and interpretation module.

aams ■3

lEvaluaf ion Criteria

IEB 13

1
Wzl

ADDSCCUS DLL
BIBUO.MOB
C2.EXE
CVPACK EXE
DATAVIEW.DLL
ImFkp.vbp
Imfip.vbw

"3

Figure 19. Image analysis and interpretation module.

Algorithm design

Algorithms were developed to detect various features within the test pattern as described earlier.
These are described below:

A. Identify the number of center lines.

Step 1. Apply binary image technique to the entire image.
Step 2. Draw multiple lines across X and/or Y axes.
Step 3. Identify mask with feature of B/W... W/B.
Step 4. Store the intersection points in an array with multiple dimensions.
Step 5. Construct regression lines based on the points within each dimension.
Step 6. Develop regression lines to compare the parallel property.
Step 7. Average the intersection points around the array to obtain the number of estimated lines.

Note 1: B = black pixel and W = white pixel.
Note 2: Use of linear regression analysis would make the linear mode robust and insensitive to

noise presence.

11

B. Identify the center point.

Step 1. Construct a regression line based on all the intercepted points.
Step 2. Identify the midpoint of an array as a starting point with the feature of W/B/W.
Step 3. Examine neighboring pixels to see if a W/W/W mask exists.
Step 4. If a W/W/W mask exists, stop the procedure; else next step.
Step 5. Check the distance of neighboring pixels from the regression line using a 3 x 3 area.
Step 6. Select the point with the smallest distance from the regression line as the next point.
Step 7. Go to step 3.

C. Identify test pattern orientation and displacement.

Step 1. Compute a theoretical center as point A.
Step 2. Identify the actual center point (based on part B) as point B.
Step 3. Compute the distance between point A and B as d.
Step 4. If d is equal to 0; then the displacement is zero.
Step 5. Construct lines between a given point with points A and B.
Step 6. Compute the angle between lines as orientation angle

D. Identify the number of gray shades within a test pattern.

Step 1. Use the center point as a starting point.
Step 2. Pick five points across the center line that are within the boundary of gray shades.
Step 3. Compute the average gray level of the five points.
Step 4. Store it in one dimension of the array.
Step 5. If the boundary is not reached, move up or down a given distance, and go to Step 3; else

next.
Step 6. Use of square root of two differences to determine the number of gray shades.

E. Identify boundary lines.

Step 1. Use the center point and boundary ratio to determine the region of the image boundary.
Step 2. Locate a starting point white pixel to use for back tracking the rest of the white pixels for

each line segment.

F. Identify the focus setting.

Step 1. Use line scan technique to record the pixels along the center lines.
Step 2. Use the B/W/B mask to identify the separation of lines.
Step 3. Compute the ratio of bottom to mid-peak and peak to valley for all four lines.
Step 4. If the ratio is approximately one, we may conclude that the focus setting is good; or else

check the focus setting.

Other methods for center point detection exist. However, these were deemed less appropriate for
this application. For instance:

12

Alternate approach #1:
bbbb

Step 1. Use of the mask of bwwwwwb
bbbb

Note: If the orientation of the image is unknown, this method can be time consuming.

Alternate approach #2:

Step 1. Find the center point of each line.
Step 2. Use the averaging method to find the center of all the centers.

Note: This method involves more steps than the proposed one, because you must first find the
center of each line and there are four lines to be examined.

Alternate approach #3:

Step 1. Identify the boundary of the image.
Step 2. Use the center of gravity method to find the center of the image.

Figure 20(a-d) shows screens from the image analysis module. Figure 20a shows a binary image
of the test pattern after the binary image technique had been applied to the test pattern captured
from the HMD. Figure 20b shows the four center lines that were identified from the binary image
(Figure 20a). After the center lines had been identified, the image analysis module identified the
center point of the image. Figure 20c shows the coordinates (y only shown) of the center point.
The image analysis module then determined if the image was tilted or not. Figure 20d displays the
tilt angle of the image. The analysis results are summarized and displayed in Figure 21. A primary
feature of the image analysis module is to identify features present in the captured test pattern. The
"Sober operator," a well known edge detection technique, is used to identify the boundaries of the
features and, thereby, allow the analysis module to determine whether or not the required features
are present in the captured test pattern image. Figure 22 shows the same image before and after the
Sober operator is applied.

Testing and validation

To verify the accuracy of the program, language debugging tools, and split-half and back
tracking strategies were imposed throughout the coding process. The program results were
compared with the simulation results. For example, to check the accuracy of the constructed
regression line, the same data points also were analyzed and compared with the results obtained
from a statistics package and hand calculation.

13

(a) (b)

(c) (d)

Figure 20. Tilted test pattern binary images from image analysis module.

HHE3

Inspection Results

"Number of center lines are: ",4
"C.LIntercept = ".188.476359098472
"C.LSlope = ",-.178625018907881
"Center X = M64.004731508093
"Center Y = ",138
"Titled angle is (clockwise): ",15.2704101628828
"Displacement is ",17.1038769277612

Quit Show Results i Back

Figure 21. Overall testing results of an HMD.

14

Figure 22. Tilted test pattern before (left) and after (right) Sober edge detection.

Hardware package design

A preliminary concept for the hardware package design consists of a display/output module,
power supply module, and image capture module. The display/output module should be designed
to display/generate inspection results of an HMD test pattern. The power supply module should be
designed to provide the voltages needed for the cameras and computer. The design also should
include a rechargeable battery pack which will allow the unit to operate in areas without an external
power supply. The power supply would be required to provide 12- and 9-volt outputs for the
cameras and computer, respectively. Finally, the image capture module must be designed to hold
an HMD and two cameras in fixed and contained positions, thereby preventing potential noise that
may affect the inspection accuracy. A proposed design is as follows: Two cameras arranged
vertically and facing the HMD. [Figure 23 shows one method investigated for aligning the CCD
image capture cameras and the HMD.] An inverted HMD fixture will be the most likely one be
used in the final concept. The fixture would be mounted with spring return locks on the sides and
bottom. The spring return locks will lock the HMD in a fixed position. These locks would prevent
the inspection process from continuing if the HMD is not positioned correctly. Once the HMD is in
the correct position, a proximity sensor will be used to trigger the image system to start the image
capture and interpretation processes. The cover of the image capture module is in the shape of an
inverted HMD. It is designed to cover the HMD tightly once it is in the correct position, and to
eliminate any optical noise from the surrounding environment. To enhance the speed of image
analysis, an Electronic Programmable Read Only Memory (EPROM) chip, custom programmed to
load the executable program for image analysis, could be used. Figure 24 illustrates a preliminary
computer aided design (CAD) concept of the hardware prototype design.

Conclusions and future directions

In this project, a design framework for an image quality tester was proposed and evaluated.
Functionality and requirements of the tester were identified. Experiments were conducted to test

15

Figure 23. Investigation of CCD image capture arrangement.

Figure 24. CAD concept of prototype hardware design.

camera sensitivity and to probe aspects of an HMD test pattern using programmable micro-
positioning systems and a CCD camera. Test pattern specifications were developed based on these
observations. A strategy for image analysis and interpretation was formed, and algorithms were
designed to verify the test pattern of a given HMD against the specifications. A prototype software

16

package was written to inspect the test pattern and verify the effectiveness of the algorithms.
Finally, a design framework for a concept hardware package was proposed.

To build a brassboard version of a tester, future work must include: (1) fabrication of the
hardware design using inverse casting techniques, (2) integration of software and hardware
components for a prototype design, (3) field testing of the prototype, (4) incorporation of learning
algorithms to increase inspection accuracy, and (5) expansion of functionality from validation to on-
line real time interactive adjusting and self-tuning based on a given environmental scenario. From
the maintenance perspective, the work can be expanded to self-diagnosis and preventative
maintenance (such as life-time prediction).

17

References

Avionics Systems Group, Military Avionics Division. 1985. Integrated Helmet and Display
Sighting System - Study Guide. St. Louis Park, MN: Honeywell, Inc.

Harding, T.H., Beasley, H.H., Martin, J.S. and Rash, C.E. 1995. Physical Evaluation of the
Integrated Helmet and Display Sighting System Helmet Display Unit. Fort Rucker, AL: U.S.
Army Aeromedical Research Laboratory. USAARL Report No. 95-32.

18

Appendix A.

List of manufacturers.

Photo Research
3000 North Hollywood Way
Burbank, CA 91505

19

Appendix B

Software prototype program.

20

Forml - 1

Private Sub Timerl_Timer()

Dim PauseTime, Start

PauseTime = 2 ' Set duration.
Start = Timer * Set start time.
Do While Timer < Start + PauseTime

DoEvents ' Yield to other processes.
Loop

Unload Me
Form2.Show

End Sub

21

Form2 - 1

Private Sub cmdQUIT_Click()

Unload Form2
End

End Sub

Private Sub Command2_Click() 'Image Analysis

unload Form2
Form4.Show

End Sub

Private Sub Commandl_Click() * Image Capture

unload Form2
Form3.Show

End Sub

Private Sub Results_Click()

Unload Form2
Form5.Show

End Sub

22

Form3 - 1

Private Sub Continue_Click()

Unload Form3
Form4.Show

End Sub

Private Sub Quit_Click()

Unload Form3
Form2.Show

End Sub

23

Form4 - 1

Public Displacement, Angle As Double
Public CenterLineSlope As Double
Public CenterLinelntercept As Double
Public Center_Point_X, Center_Point_Y As Double

Const intUpperBoundX = 320 ■ '320 total
Const intUpperBoundY = 244 '244 total
Const N = 4 '# of center line

Dim X, Y As Integer
Dim picObjectO, picObjectl As Picture
Dim Coord_X(0 To 45, 0 To 10) As Integer
Dim Coord_Y(0 To 45, 0 To 10) As Integer
Dim pixels(0 To intUpperBoundX, 0 To intUpperBoundY) As Long
Dim ImagePixels(2, intUpperBoundX, intUpperBoundY) As Integer
Private Sub cmdSelect_Click()

Dim FileName, EdgeDetection As String
Dim bytRed, bytGreen, bytBlue, bytAverage As Integer

On Error GoTo FileError
If (Right$(Dirl.Path, 1) = "\") Then

FileName = Filel.Path & Filel.FileName
Else

FileName = Filel.Path & "\" & Filel.FileName
End If

Open FileName For Input As #1
Set picObjectO = LoadPicture(FileName)
Set PictureO.Picture = picObjectO
Close #1

For X =•0 To intUpperBoundX - 1
For Y = 0 To intUpperBoundY - 1

pixels(X, Y) = PictureO.Point(X, Y)
bytRed = GetRed(pixels(X, Y))
bytGreen = GetGreen(pixels(X, Y))
bytBlue = GetBlue(pixels(X, Y))

ImagePixels(0, X, Y) = bytRed
ImagePixels(1, X, Y) = bytGreen
ImagePixels(2, X, Y) = bytBlue

'the file u have is in gray scale; therefore, u do not need to average
PictureO.PSet (X, Y), RGB(bytRed, bytGreen, bytBlue)

Next Y
Next X

Exit Sub

FileError: MsgBox "File Error!"

End Sub

Private Sub cmdCenter_and_Boundary_Click()

Set PictureO.Picture = picObjectO
For X = 0 To intUpperBoundX - 1

For Y = 0 To intUpperBoundY - 1
PictureO.PSet (X, Y), PictureO.Point(X, Y)

Next Y
Next X

Set picObjectl = PictureO.Picture
SavePicture picObjectl, "TESTI.BMP"
LoadPicture ("TESTI.BMP")

24

Form4 - 2

End Sub

Private Sub cmdEdgeDetection_Click()

Dim RGBLong As Long
Dim G_X, G_Y, G_X_Y As Integer
Dim bRXY, bRXmlY, byRXYml, bRXmlYml As Integer
Dim bRXplY, bRXYpl, bRXplYpl, bRXplYml, bRXmlYpl As Integer
Dim bytRed, bytGreen, bytBlue As Integer

Set PictureO.Picture = picObjectO

For X = 0 To intUpperBoundX - 1
For Y = 0 To intUpperBoundY - 1

If (X = 0 Or X = intUpperBoundX - 1 Or Y = 0 Or Y = intUpperBoundY - 1) Then

bytRed = ImagePixels(0, X, Y)
bytBlue = ImagePixels(1, X, Y)
bytGreen = ImagePixels(2, X, Y)
RGBLong = RGB(bytRed, bytGreen, bytBlue)

PictureO.PSet (X, Y), RGBLong

Else

G_X = 0
G_Y = 0
G_X_Y = 0

bRXY = ImagePixels (0, X, Y)
bRXYpl = ImagePixels (0, X, Y + 1)
bRXmlY = ImagePixels(0, X - 1, Y)
bRXYml = ImagePixels(0, X, Y - 1)
bRXmlYpl = ImagePixels(0, X - 1, Y
bRXmlYml = ImagePixels(0, X - 1, Y
bRXplY = ImagePixels (0, X + 1, Y)
bRXplYml = ImagePixels(0, X + 1, Y
bRXplYpl = ImagePixels(0, X + 1, Y

1)
1)

1)
1)

G_X = bRXplYml + 2 * bRXplY + bRXplYpl - bRXmlYml
G_Y = bRXmlYpl + 2 * bRXYpl + bRXplYpl - bRXmlYml
G_X_Y = Sqr((G_X * G_X) + (G_Y * G_Y))

bytRed = G_X_Y

bRXY = ImagePixels(1, X, Y)
bRXYpl = ImagePixels(1, X, Y + 1) .
bRXmlY = ImagePixels (1, X - 1, Y)
bRXYml = ImagePixels(1, X, Y - 1)
bRXmlYpl = ImagePixels(1, X - 1, Y
bRXmlYml = ImagePixels(1, X - 1, Y

ImagePixels(1, X + 1, Y)
= ImagePixels(1, X + 1, Y

2 * bRXmlY - bRXmlYpl
2 * bRXYml - bRXplYml

bRXplY =
bRXplYml
bRXplYpl = ImagePixels(1, X + 1, Y +

1)
1)

1)
1)

G_X = bRXplYml + 2 * bRXplY + bRXplYpl - bRXmlYml
G_Y = bRXmlYpl + 2 * bRXYpl + bRXplYpl - bRXmlYml
G_X_Y = Sqr((G_X * G_X) + (G_Y * G_Y))

bytBlue = G_X_Y

bRXY = ImagePixels(2, X, Y)
bRXYpl = ImagePixels(2, X, Y + 1)
bRXmlY = ImagePixels(2, X - 1, Y)
bRXYml = ImagePixels(2, X, Y - 1)
bRXmlYpl = ImagePixels(2, X - 1, Y + 1)
bRXmlYml = ImagePixels(2, X - 1, Y - 1)
bRXplY = ImagePixels(2, X + 1, Y) 25

bRXmlY
bRXYml

bRXmlYpl
bRXplYml

Form4 - 3

bRXplYml = ImagePixels(2, X + 1, Y - 1)
bRXplYpl = ImagePixels(2, X + 1, Y + 1)

G X = bRXDlYml + 2 * bRXplY + bRXplYpl - bRXmlYml - 2 * bRXmlY - bRXmlYpl
G-Y = bRX^Ypl + 2 * bRXYpl + bRXplYpl - bRXmlYml - 2 * bRXYml - bRXplYml
G~X_Y = Sqr((G_X * G_X) + (G_Y * G_Y))

bytGreen = G_X_Y

PictureO.PSet (X, Y), RGB(bytRed, bytGreen, bytBlue)

End If

Next Y
Next X

End Sub
Private Sub cmdGray_Shade Click()

Set PictureO.Picture = picObjectO
For X = 0 To intUpperBoundX - 1

For Y = 0 To intüpperBoundY - 1
PictureO.PSet (X, Y), PictureO.Point(X, Y) - 5

Next Y
Next X

End Sub
Private Sub cmdFoucs_Click()

Set PictureO.Picture = picObjectO
For X = 0 To intUpperBoundX - 1

For Y = 0 To intüpperBoundY - 1
PictureO.PSet (X, Y), PictureO.Point (X, Y) - 10

Next Y
Next X

End Sub
Private Sub cmdDis_and_Orientation_Click()
Const interval_range =7

Dim WhitePixel, BlackPixel As Long
Dim linescan As Integer
Dim i, j, k, L, IntX, Temp_X, Temp_Y As Integer
Dim Flag, SumTline, Dummy As Integer
Dim interval As Integer
Dim ZeroO_X, ZeroO_Y As Double
Dim LISlopeR, L2SlopeR, L3SlopeR, L4SlopeR, LISlopeY, _

L2SlopeY, L3SlopeY, L4SlopeY, AvgSlope As Double

Dim UpperBound, LowerBound As Double
Dim InterceptY As Integer
Dim Count_Points(0 To 403) As Integer
Dim Templnt, Choice As Integer
Dim Dum{0 To 15) As Double
Dim TempDouble As Double
Dim Tline(0 To 50) As Integer
Dim Oripixels(0 To intUpperBoundX, 0 To intüpperBoundY) As Long

Dim Displacement, Angle, Theta As Double
Dim CenterLineSlope As Double
Dim CenterLinelntercept As Double
Dim Center_Point_X, Center_Point_Y As Double
Dim TempText As String

Open "c:\windows\desktop\InspResults.txt" For Output As #1

For X = 0 To intUpperBoundX - 1
For Y = 0 To intüpperBoundY - 1 zb

Form4 - 4

Oripixels(X, Y) = pixels(X, Y)
Next Y

Next X

'Apply the binary 'image technique

For X = 0 To intUpperBoundX - 1
For Y = 0 To intUpperBoundY - 1

If (Oripixels(X, Y) < RGB(255, 255, 255)) Then
Oripixels(X, Y) = 0

Else
Oripixels(X, Y) = RGB(255, 255, 255)

End If
PictureO.PSet (X, Y), Oripixels(X, Y)

Next Y
Next X

'Find the number of center lines
'A line is BW...WB; if there is less than four BW...WBs; then Image is tilled
'white interval should be less than 7 for the central lines
'use Black/White/Black to find a line

linescan = 0
interval =1

For Y = 50 To intUpperBoundY - 1
Tline(linescan) = 0
Flag =0
L = 0

For X = 0 To intUpperBoundX - 1
If ((Oripixels(X, Y) = RGB(0, 0, 0)) And _
(Oripixels(X + 1, Y) = RGB(255, 255, 255))) Then

For interval = 1 To interval_range - 1
If (Oripixels(X + 1 + interval, Y) = RGB(0, 0, 0)) Then

Tline(linescan) = Tline(linescan) + 1
Flag = 1

Coord_X(linescan, L) = X + 1 'of each line
Coord_Y(linescan, L) = Y

L = L + 1

End If
interval = interval_range 'stop the for loop

Next interval
End If

Next X
Y = Y + 10 ' 5 'to have 40 arbitary verticle lines
If (Flag = 1) Then
linescan = linescan + 1
End If

Next Y

k = 0
SumTline = 0
For j = 0 To linescan - 1 'from prev. routine # of arb. ver. lines
If (Tline(j) > 0) Then

SumTline = SumTline + Tline(j)
k = k + 1

End If
Next j

If (3.5 <= (SumTline / k) <= 4.5) Then
MsgBox ("Number of center lines is " & N)

27

Form4 - 5

LISlopeR = GetSlope(linescan, 0, 0)
LISlopeY = GetSlope(linescan, 0, 1)

L2SlopeR = GetSlope(linescan, 1, 0)
L2SlopeY = GetSlope(linescan, 1, 1)

L3SlopeR = GetSlope(linescan, 2, 0)
L3SlopeY = GetSlope(linescan, 2,1)

L4SlopeR = GetSlope(linescan, 3, 0)
L4SlopeY = GetSlope(linescan, 3, 1)

AvgSlope = (LISlopeY + L2SlopeY + L3SlopeY + L4SlopeY) / 4
LowerBound = 0.025 * AvgSlope
UpperBound = 1.025 * AvgSlope

'use the absolute value; therefore, it works on both -/+ values

If ((Abs(LowerBound) <= Abs(LISlopeY) <= Abs(UpperBound)) And _
(Abs(LowerBound) <= Abs(L2SlopeY) <= Abs(UpperBound)) And _
(Abs(LowerBound) <= Abs(L3SlopeY) <= Abs(UpperBound)) And _
(Abs(LowerBound) <= Abs(L4SlopeY) <= Abs(UpperBound))) Then
MsgBox ("Four lines are parallel !")

Else: MsgBox ("Potential errors in finding parallel lines")
End If

Else
MsgBox ("Number of center lines is " & SumTline / k)

End If

'The following is to find the center point of the image
'Step 1: Find the black pixel
'Step 2: Calcuate the neighborhood pixels distance to the regression line
'Step 3: Locate the one that has the smallest distance
'Step 4: Check to see if the feature of w
> wwww

W
' been meet
' if not; based on current X, Y; go to Step 1

BlackPixel = RGB(0, 0, 0)
WhitePixel = RGB(255, 255, 255)

CenterLineSlope = GetSlope(linescan, 0, 2)
CenterLinelntercept = GetSlope(linescan, 0, 3)

MsgBox ("C.L.Intercept = " & CenterLinelntercept)
MsgBox ("C.L.Slope = " & CenterLineSlope)

For Y = 20 To intUpperBoundY - 1
X = (Y * CenterLineSlope) + CenterLinelntercept

IntX = X
If (OripixelsdntX, Y) = BlackPixel) Then

L = 0
Temp_X =0
Temp_Y =0
For i = -1 To 1

For j = -1 To 1
If (OripixelsdntX + i, Y + j) = WhitePixel) Then

Temp_X = Temp_X + (IntX + i)
•J' Temp_Y = Temp_Y + (Y + j)

L = L + 1
End If
If (L >= 3) Then 'Neighborhood pixels are White

Center_Point_X = Temp_X / L
Center_Point_Y = Temp_Y / L
MsgBox ("Center X = " & Center_Point_X)
Beep 28

Form4 - 6

MsgBox ("Center Y = " & Center_Point_Y)
i = 1
j " 1
Y = intUpperBoundY

End If
Next j

Next i

L = 0
Dum(L) =0
For i = 0 To 1

For j = 0 To 1
If (i <> 0 Or j <> 0) Then

Dum(L) = Measure_Distance(CenterLinelntercept, CenterLineSlope, X + i, Y + j)
L = L + 1

End If
Next j

Next i

For k = 0 To L - 1
If (Dum(k) < Dum(k +1)) Then
TempDouble = Dum(k)
Dum(k) = Dum(k +1)
Dum(k + 1) = TempDouble

End If
Next k

For i = 0 To 1
For j = 0 To 1

If ((i <> 0 Or j <> 0) And (Dum(L - 1) = Measure_Distance (CenterLinelntercept, Cent
erLineSlope, X + i, Y + j))) _

Then _

X = X + i
Y = Y + j - 1 'because Y auto. inc. by 1
i = 1
j = 1

End If
Next j

Next i

End If •
PictureO.PSet (IntX, Y), RGB(255, 255, 255)

Next Y

'The following section is to find the orientation and displacement
'Comparing the theoretical zero point and new zero point
'Calculate the displacement and titled angle

ZeroO_X = (intUpperBoundX - 1) / 2
ZeroO_Y = (intUpperBoundY - 1) / 2

If ((Center_Point_X - ZeroO_X = 0) And (Center_Point_Y - ZeroO_Y = 0)) Then

Theta =0
Displacement =0

Else

Displacement = Sqr((Center_Point_X - ZeroO_X) A 2 + (Center_Point_Y - ZeroO Y) * 2)
TempDouble = (Center_Point_Y - ZeroO_Y) / Displacement ~~
Theta = Atn(TempDouble / Sqr(-TempDouble * TempDouble +1))
Angle = 90 - ((Theta / 3.141592654) * 180)

End If

MsgBox ("Titled angle is (clockwise): " & Angle)
29

Form4 - 7

MsgBox ("Displacement is: " £. Displacement)

For X = 0 To intUpperBoundX - 1
For Y = 0 To intUpperBoundY - 1
PictureO.PSet (X, Y), RGB(255, 255, 255)
Next Y

Next X

For i = 0 To 6

PictureO.CurrentX =20
PictureO.CurrentY = 20 + 15 * i
Select Case i

Case 0:
PictureO.Print ("Number of center lines are " & N)
TempText = "Number of center lines are: "
Write #1, TempText, N

Case 1:
PictureO.Print ("C.L.Intercept = " & CenterLinelntercept)
Write #1, "C.L.Intercept = ", CenterLinelntercept

Case 2:
PictureO.Print ("C.L.Slope = " & CenterLineSlope)
Write #1, "C.L.Slope = ", CenterLineSlope

Case 3:
PictureO.Print ("Center X = " & Center_Point_X)
Write #1, "Center X = ", Center_Point_X

Case 4:
PictureO.Print ("Center Y = " & Center_Point_Y)
Write #1, "Center Y = ", Center_Point_Y

Case 5:
PictureO.Print ("Titled angle is (clockwise): " & Angle)
Write #1, "Titled angle is (clockwise): ", Angle

Case 6:
PictureO.Print ("Displacement is: " & Displacement)
Write #1, "Displacement is ", Displacement

End Select
Next i
Close #1

End Sub

Private Sub cmdQUIT_Click()

Unload Form4
Exit Sub

• Form2.Show

End Sub
Private Sub cmdBack_Click()

Unload Form4
Form3.Show

End Sub
Private Sub Dirl_Change()

Filel.Path = Dir1.Path
End Sub •
Private Sub Drivel_Change ()

Dirl.Path = Drivel.Drive
End Sub
Function GetRed(colorVal As Long) As Integer

GetRed = colorVal Mod 256 30

Form4 - 8

End Function
Function GetGreen(colorVal As Long) As Integer

GetGreen = ((colorVal And &HFF00FF00) / 256&)
End Function
Function GetBlue(colorVal As Long) As Integer

GetBlue = (colorVal And &HFF0000) / (256& * 256&)
End Function
Function GetSlope(Points As Integer, LineN As Integer, Choice As Integer) As Double

Dim SumXY, SumX, SumY As Double
Dim SumYsq, SumXsq, FuncDumy As Double
Dim A, Index, Position_X, Position_Y As Integer

SumXY = 0
SumX = 0
SumY =0
SumXsq =0
SumYsq =0
Position_X = 0
Position_Y = 0
Index = 0
FuncDumy =0

'Sometimes the image is trancated; u do not have
'all the 18 points; we use the B to represent to count
'all the points
'Choice 0: Line correlation coefficient
'Choice 1: Parallel line slope
'Choice 2: Center line slope
'Choice 3: Center line intercept

If (Choice = 0 Or Choice = 1) Then
For A = 0 To Points - 1

Position_X = Coord_X(A, LineN)
Position_Y = Coord_Y(A, LineN)

If ((Position_X <> 0) And (Position_Y <> 0)) Then
SumXY = SumXY + (Position_X * Position_Y)
SumX = SumX + Position_X
SumY = SumY + Position_Y
SumYsq = SumYsq + Position_Y A 2
SumXsq = SumXsq + Position_X A 2
Index = Index + 1

End If
Next A

End If

If (Choice = 2 Or Choice = 3) Then
For A = 0 To Points - 1
For LineN = 0 To N - 1
Position_X = Coord_X(A, LineN)
Position_Y = Coord_Y(A, LineN)

If ((Position_X <> 0) And (Position_Y <> 0)) Then
SumXY = SumXY + (Position_X * Position_Y)
SumX = SumX + Position_X
SumY = SumY + Position_Y
SumYsq = SumYsq + Position_Y A 2
SumXsq = SumXsq + Position_X A 2
Index = Index + 1

End If
Next LineN

Next A
End If

If ((SumX = 0) Or (SumY = 0) Or (SumX * SumY = 0)) Then
GetSlope =0 31

Form4 - 9

Else
If (Choice = 1 Or Choice = 2) Then

GetSlope = ((SumXY) - ((SumX * SumY) / Index)) / ((SumYsq) - ((SumY * SumY) /Index))
End If

If (Choice = 3) Then
FuncDumy = ((SumXY) - ((SumX * SumY) / Index)) / ((SumYsq) - ((SumY * SumY) / Index))
GetSlope = (SumX - (FuncDumy * SumY)) / Index

End If

If (Choice = 0) Then
FuncDumy = Sqr((SumXsq - (SumX * 2 / Index)) * (SumYsq - (SumY " 2 / Index)))
GetSlope = ((SumXY) - ((SumX * SumY) / Index)) / FuncDumy

End If
End If

End Function
Function dblSquare(SquareMe As Integer) As Double

dblSquare = SquareMe " 2 * * SquareMe

End Function
Function Measure_Distance(cl -As Double, ml As Double, Point2_X As Integer, Pomt2_Y As Integer)
As Double

Dim Pointl_X, Pointl_Y As Long
Dim c2 As Long

c2 = Point2_X - ((-1 / ml) * Point2_Y)
Pointl_X = (c2 * ml - cl * (-1 /ml)) / (ml - (-1 /ml))
Pointl Y = (c2 - cl) / (ml - (-1 /ml))
Measure_Distance = Sqr((Point2_X - Pointl_X) " 2 + (Point2_Y - Pointl_Y) A 2)

End Function

Private Sub Frame4_DragDrop(Source As Control, X As Single, Y As Single)

End Sub

32

Form5 - 1

Private Sub Back_Click()

Unload Form5
Form4.Show

End Sub

Private Sub Picture2_Click()

End Sub

Private Sub Quit_Click()

Unload Form5
Exit Sub

End Sub
Private Sub ShowRes_Click()

Dim NewLine As String

On Error GoTo FileError
Open "c:\windows\desktop\InspResults.txt" For Input As #1
Do Until EOF(l)

Line Input #1, NewLine
TEXTl.Text = TEXTl.Text + NewLine + vbCrLf

Loop

Exit Sub

FileError:
MsgBox "File Error! "

End Sub

33

Forml - 1

Private Sub Timerl_Timer()

Dim PauseTime, Start

PauseTime = 2 ' Set duration.
Start = Timer ' Set start time.
Do While Timer < Start + PauseTime

DoEvents ' Yield to other processes.
Loop

Unload Me
Form2.Show

End Sub

34

Forml

VERSION 5.00
Begin VB.Form Forml

Caption "HMD TESTER"
ClientHeight = 4140
ClientLeft 60
ClientTop 345
ClientWidth 7890
LinkTopic = "Forml"
ScaleHeight 4140
ScaleWidth 7890
StartUpPosition = 3 'Windows Default
Begin VB.Frame Framel

Height 4050
Left 0
Tablndex 0
Top 0
Width 7905
Begin VB.Timer Timerl

Interval = 1000
Left = 6960
Top = 3360

End
Begin VB.Label lblCompanyProduct

AutoSize = -1 'True
Caption = "US AARL"
BeginProperty Font

Name "Arial"
Size 18
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 435
Left = 3240
Tablndex = 8
Top = 600
Width = 1590

End
Begin VB.Label lblLicenseTo

Alignment = 1 'Right Justify
Caption = " ****** ii

BeginProperty Font
Name "Arial"
Size 8.25
Charset 0
Weight 400
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 255
Left = 3960
Tablndex = 7
Top = 360
Width = 3495

End
Begin VB.Label lblProductName

AutoSize = -1 'True
BackColor = &H80000018&
Caption = "HMD TESTER"
BeginProperty Font

Name "Arial"
Size 32.25
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False 35

Forml

Strikethrou gh 0 'False
EndProperty
Height = 765
Left = 3240
Tablndex = 6
Top = 1140
Width = 4245.

E.I1U

Begin VB.Label lblPlatform
Alignment = 1 'Right Justify
AutoS.ize = -1 'True
Caption = "Platform: PC"
BeginProperty Font

Name "Arial"
Size 15.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 360
Left = 4950
Tablndex = 5
Top = 2340
Width = 1905

End
Begin VB.Label lblVersion

Alignment = 1 'Right Justify
AutoSize = -1 'True
Caption = "Version: 1.0"
BeginProperty Font

Name "Arial"
Size 12
Charset 0
Weight = 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 285
Left = 54 90
Tablndex = 4
Top = 2700

' Width = 1365
End
Begin VB.Label lblWarning

Caption =. "Supported by US AARL and Army Summer Faculty Research Program"
BeginProperty Font

Name »£ Lri al"
Size 8. 25
Charset 0
Weight 400
Underline 0 ■False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height 195
Left 150
Tablndex = 3
Top 3660
Width 6855

End
Begin VB.Label lblCompany

Caption = "August, 1999"
BeginProperty Font

Name = "Arial"
Size = 8.25
Charset =0 36

Forml

Weight 400
Underline 0 False
Italic 0 'False
Strikethr ough 0 False

EndProperty
Height = 255
Left = 4560
Tablndex = 2
Top = 3270
Width = 2415

End
Begin VB.Label lblCopyright

Caption = "Sheng-Jen ("
BeginPropert y Font

Name "Arial"
Size 8.25
Charset 0
Weight 400
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 255
Left = 4560
Tablndex = 1
Top = 3060
Width = 2415

End
Begin VB.Image imgLogo

Height = 3105
Left = 240
Picture = (Bitmap
Stretch = -1 'True
Top = 360
Width = 2655

End
End

End

(""Tony"") Hsieh, Ph.D.

37

Form2 - 1

Private Sub cmdQUIT_Click()

unload Form2
End

End Sub

Private Sub Command2_Click() 'Image Analysis

Unload Form2
Form4.Show

End Sub

Private Sub Commandl_Click () 'Image Capture

Unload Form2
Form3.Show

End Sub

Private Sub Results_Click()

Unload Form2
Form5.Show

End Sub

38

Form2 - 1

VERSION 5.00
Begin VB.Form Forra2

Caption "Main Menu'
ClientHeight 4185
ClientLeft 60
ClientTop 345
ClientWidth 6165
LinkTopic "Form2"
ScaleHeight 4185
ScaleWidth 6165
StartUpPosition = 3 'Windows Default
Begin VB.CommandButtön cmdQUIT

Caption "Quit"
BeginProperty Font

Name "Comi c Sans MS"
Size 8.25
Charset 0
Weight 400
Underline 0 False
Italic 0 False
Strikethrough = 0 ' False

EndProperty
Height 375
Left 5520
Tablndex 4
Top 3720
Width 495

End
Begin VB.CommandButtön Image Capture

Caption = "Image Capture"
BeginProperty Font

Name "Comic Sans MS"
Size 8.25
Charset 0
Weight 400
Underline 0 False
Italic 0 False
Strikethrough = 0 False

EndProperty
Height 375
Left 0
Tablndex 3
Top 3720
Width 1335

End
Begin VB.CommandButtön Command2

Caption = "Image Analysis"
BeginProperty Font

Name "Comic Sans MS"
Size 8.25
Charset 0
Weight 400
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 1440
Tablndex = 2
Top = 3720
Width = 1335

End
Begin VB.CommandButtön Results

Caption = "Results"
BeginProperty Font

Name "Comic Sans MS"
Size 8.25
Charset 0
Weight 400 39

Form2

Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 2880
Tablndex = 1
Top = 3720
Width = 1215

End
Begin VB.CommandButton Command4

Caption = "Help"
BeginProperty Font

Name = "Comic Sans MS"
Size 8.25
Charset 0
Weight 400
Underline 0 "False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 4200
Tablndex = 0
Top = 3720
Width = 1215

End
Begin VB.Image Imagel

Height = 4140
Left = 0
Picture = (Bitmap)
Stretch = -1 'True
Top = 0
Width = 6240

End
End

40

Form3 - 1

Private Sub Continue_Click ()

Unload Form3
Form4.Show

End Sub

Private Sub Quit_Click()

unload Form3
Form2.Show

End Sub

41

Form3 - 1

VERSION 5.00
Begin VB.Form Form3

AutoRedraw = -1 'True
Caption "Image Capture"
ClientHeight 3690
ClientLeft 60
ClientTop 345
ClientWidth 7605
BeginProperty Font

Name = "Comic Sans MS"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
LinkTopic = "Form3"
Picture = (Bitmap)
ScaleHeight 3690
ScaleWidth 7605
StartUpPosition = 3 'Windows Default
Begin VB.CommandButton Continue

Caption = "Continue"
Height = 375
Left = 3600
Tablndex = 8
Top = 3240
Width = 855

End
Begin VB.TextBox Help

Alignment = 2 'Center
BorderStyle = 0 'None
DragMode = 1 'Automatic
Height = 285
Left = 6960
Tablndex = 6
Text = "Help"
Top = 2880
Width = 495

End
Begin VB.TextBox Text2

Alignment = 2 'Center
BorderStyle = 0 'None
Height = 285
Left = 5880
Tablndex = 5
Text = "User Manual"
Top = 2880
Width = 975

End
Begin VB.TextBox Capure

Alignment = 2 'Center
BorderStyle = 0 'None
Height = 285
Left = 4560
Tablndex = 4
Text = "View & Capture"
Top ■ = 2880
Width = 1215

End
Begin VB.CommandButton Quit

Caption = "Quit"
Height ' = 375
Left = • 2400
Tablndex = .0
Top = 3240
Width = 735

End

Form3

Begin VB.Label Label1
BackColor = &H00FFFFFF&
Caption = "Double click to activate"
Height = 255
Left ■= 5400
Tablndex = 7
Top = 2520
Width = 1815

End
Begin VB.OLE OLE3

BackColor = &H00C0C0C0&
Class = "Package"
DisplayType = 1 'Icon
Height = 375
Left = 6960
SourceDoc = "C:\Program Files\MRT micro\MRT VideoPort Professional\User ManualsXEd
Tablndex = 3
Top = 3240
Width = 615

End
Begin VB.OLE 0LE2

BackColor = &H00C0C0C0&
DisplayType = 1 'Icon
Height = 375
Left = 5880
SourceDoc = "C:\WINDOWS\twain\Camdrv80\Camdrive.hlp"
Tablndex = 2
Top = 3240
Width = 975

End
Begin VB.OLE 0LE1

BackColor = &H00C0C0C0&
DisplayType = 1 'Icon
Height = 375
Left = 4560
SourceDoc = "C:\Program Files\MRT micro\MRT VideoPort ProfessionalMmage WizardNRi
Tablndex = 1
Top = 3240
Width = 1215

End
Begin VB.Image Imagel

Height = 3705
Left = 240
Picture = (Bitmap)
Top = 0
Width = 8070

End
End

43

